Distinct roles of TRAF6 at early and late stages of muscle pathology in the mdx model of Duchenne muscular dystrophy.
نویسندگان
چکیده
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by loss of functional dystrophin protein. Accumulating evidence suggests that the deficiency of dystrophin leads to aberrant activation of many signaling pathways which contribute to disease progression. However, the proximal signaling events leading to the activation of various pathological cascades in dystrophic muscle remain less clear. TNF receptor-associated factor 6 (TRAF6) is an adaptor protein which acts as a signaling intermediate for several receptor-mediated signaling events leading to the context-dependent activation of a number of signaling pathways. TRAF6 is also an E3 ubiquitin ligase and an important regulator of autophagy. However, the role of TRAF6 in pathogenesis of DMD remains unknown. Here, we demonstrate that the levels and activity of TRAF6 are increased in skeletal muscle of mdx (a mouse model of DMD) mice. Targeted deletion of TRAF6 improves muscle strength and reduces fiber necrosis, infiltration of macrophages and the activation of proinflammatory transcription factor nuclear factor-kappa B (NF-κB) in 7-week-old mdx mice. Ablation of TRAF6 also increases satellite cells proliferation and myofiber regeneration in young mdx mice. Intriguingly, ablation of TRAF6 exacerbates muscle injury and increases fibrosis in 9-month-old mdx mice. TRAF6 inhibition reduces the markers of autophagy and Akt signaling in dystrophic muscle of mdx mice. Collectively, our study suggests that while the inhibition of TRAF6 improves muscle structure and function in young mdx mice, its continued inhibition causes more severe myopathy at later stages of disease progression potentially through repressing autophagy.
منابع مشابه
Klotho gene silencing promotes pathology in the mdx mouse model of Duchenne muscular dystrophy.
Duchenne muscular dystrophy (DMD) is a lethal muscle disease involving progressive loss of muscle regenerative capacity and increased fibrosis. We tested whether epigenetic silencing of the klotho gene occurs in the mdx mouse model of DMD and whether klotho silencing is an important feature of the disease. Our findings show that klotho undergoes muscle-specific silencing at the acute onset of m...
متن کاملP164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملTRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis.
Satellite cells are a stem cell population within adult muscle and are responsible for myofiber regeneration upon injury. Satellite cell dysfunction has been shown to underlie the loss of skeletal muscle mass in many acquired and genetic muscle disorders. The transcription factor paired box-protein-7 (PAX7) is indispensable for supplementing the reservoir of satellite cells and driving regenera...
متن کاملDisease course in mdx:utrophin+/− mice: comparison of three mouse models of Duchenne muscular dystrophy
The mdx mouse model of Duchenne muscular dystrophy (DMD) is used to study disease mechanisms and potential treatments, but its pathology is less severe than DMD patients. Other mouse models were developed to more closely mimic the human disease based on knowledge that upregulation of utrophin has a protective effect in mdx muscle. An mdx:utrophin(-/-) (dko) mouse was created, which had a severe...
متن کاملUtrophin-Dystrophin-Deficient Mice as a Model for Duchenne Muscular Dystrophy
The absence of dystrophin at the muscle membrane leads to Duchenne muscular dystrophy (DMD), a severe muscle-wasting disease that is inevitably fatal in early adulthood. In contrast, dystrophin-deficient mdx mice appear physically normal despite their underlying muscle pathology. We describe mice deficient for both dystrophin and the dystrophin-related protein utrophin. These mice show many sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2014